Solar HTG

Optimal design of solar assisted hydrothermal gasification plants
Wet biomass represents a very important part of the biomass resources sustainably available in the world. The amount of industrial wastewater and sewage sludge containing high concentration of organic content to be treated is constantly increasing. For instance, the boom of biofuel production generates important volume of wastewater that needs to be treated before being released in the environment. This is also the case of manure and other waste biomass whose disposal creates burden on the environment and therefore requires new innovative techniques for treatment and valorisation.

htg1

Hydrothermal gasification (HTG) is a relatively new technology that is able to convert wet biomass or wastewater in supercritical water into gas, clean water and salts. This technology is particularly well suited for the energetic valorisation of wet biomass and sludge. It has also one very important advantage, it allow for recovering the salts contained in the biomass by precipitation. These salts can then be used again as fertilizer. This is particularly important for the phosphorus since its availability is very limited. The peak phosphorus should occur by 2030.

In conventional design this heat is provided by the combustion of a fraction of the produced gas and therefore reduces considerably the biomass to fuel conversion efficiency. With low energetic density wet biomass, this energetic conversion efficiency could even be negative.

HTG2This problem could be solved by supplying the heat required by HTG with an external renewable heat source. The heat produced by concentrating solar irradiation is particularly well suited for this application. This project proposes to study the coupling of a solar thermal plant with a HTG plant in order to increase the HTG conversion efficiency and store the solar energy in the fuel produced. This new innovative process has been called “Solar-HTG”.

The optimal design of plants in which a stationary process, such as HTG, is coupled with an intermittent utility such as solar thermal plant, represent a challenge. The mathematical models need to be developed deal with time dependent variables, integer variables, highly non-linear and discontinuous objectives functions.

Keywords:

  • Optimal design
  • Hydrothermal gasification
  • Solar energy
  • Waste biomass valorisation

Contact: Alberto Mian

Publication List:

Field Guide to Northern Tree-related Microhabitats: Descriptions and size limits for their inventory in boreal and hemiboreal forests of Europe and North America

R. Bütler Sauvain; L. Larrieu; L. F. Lunde; M. Maxence; B. Nordén et al. 

Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland, 2024.

Data Champions Lunch Talks – Green Bytes: Data-Driven Approaches to EPFL Sustainability

M. S. P. Cubero-Castan; M. Peon Quiros; C. Gabella; F. Varrato; Loïc Lannelongue 

Data Champions Lunch Talks – Green Bytes: Data-Driven Approaches to EPFL Sustainability, EPFL, CM 1 221, April 18, 2024.

Comparison of Three Viral Nucleic Acid Preamplification Pipelines for Sewage Viral Metagenomics

X. Fernandez Cassi; T. Kohn 

Food and Environmental Virology. 2024. DOI : 10.1007/s12560-024-09594-3.

How to Support Students to Develop Skills that Promote Sustainability

S. R. Isaac; J. de Lima 

Teaching Transversal Skills for Engineering Studens: A Practical Handbook of Activities with Tangibles; EPFL, 2024.

How to Support Students Giving Each Other Constructive Feedback, Especially When It Is Difficult to Hear

S. R. Isaac; J. de Lima 

Teaching Transversal Skills for Engineering Studens: A Practical Handbook of Activities with Tangibles; EPFL, 2024.

How teachers can use the 3T PLAY trident framework to design an activity that develops transversal skills

S. R. Isaac; J. de Lima 

Teaching Transversal Skills for Engineering Studens: A Practical Handbook of Activities with Tangibles; EPFL, 2024.

The conceptual foundations of innate immunity: Taking stock 30 years later

Pradeu Thomas; Thomma Bart T.P.H.; Girarding Stephen; B. Lemaitre 

Immunity. 2024-04-09. Vol. 57, num. 4, p. 613-631. DOI : 10.1016/j.immuni.2024.03.007.

Radio-Activities: Architecture and Broadcasting in Cold War Berlin

A. Thiermann 

Cambridge, MA; London: MIT Press, 2024.

No Last One

A. Thiermann 

Revue Matières. 2024. num. 18.

All That is Solid

A. Thiermann 

Transcalar Prospects in Climate Crisis; Zurich: Lars Müller, 2024.